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An inertial system Independently defining the coordinates and orientation of 
an object In space by means of accelerometers and gyroscopes [l and 21 Is 
Investigated. The general case of determination of arbitrary, nonstationary 
and nonorthogonal curvilinear coordinates Is considered, as distinct from 
[2] In which these coordinates were Cartesian. Equations are devlded for 
the unperturbed functioning of such an Inertial system with Its kinematic 
model based on a gyro-stabilized platform, or a controllable gyro-frame. 

1. We introduce a right-hand orthogonal system of coordinates 0161<2<3 

with Its origin at the center of the Earth, and Its axes permanently oriented 

In the direction of fixed stars. The position of the moving object will be 

determined by the position of any of Its point 0 in relation to 01c'<2<" 

by coordinates x',na,x3, SD that 

(1.1) 
Here and In the following text, Latin indexes run from 1 to 3. According 

to the second expression of (1.1) the Jacobian of transformation of function 

F' with respect to coordinates X" Is different from zero. This means that 

relationships (1.1) are reversible throughout the region of possible motions 

of the object. 

The model of this Inertial guidance system Is visualized as follows. At 

Its base Is a gyro-stabilized platform, the axes of which coincide with the 

directions of axes c1 of the coordinate system 01<'5a53. The platform car- 

ries three accelerometers set to a special pattern. The unit vectors of 

direction of the sensitivity axes of the accelerometers will be denoted by 

a. 9 and their Indications by n,,. We shall assume the kinematic pattern to 
be such, as to provide the req&ed dependence of directions a, from coor- 

dinates W* , determined by the Inertial system and from time t : 

e, = e, (y.‘, x2, x3, 1). 
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We assume that directions or are not coplanar. 

We shall Introduce a fundamental coordinate base [3 and 4] defined by 

vectors 
r=ar S 

axs ’ 
== E"ES (1.2) 

where r Is the radius vector from the center of the Earth 0, to point 0 

of the object, and t8 are unit vectors of axes ES. The Latin superscripts 

and subscripts in the second equation of (1.2) indicate here and in the fol- 

lowing text summation in s from 1 to 3. It follows from (1.13 that vectors 

r, are not coplanar. We shall introduce a reciprocal base defined by vectors 

P reciprocal to vectors r, * 

Finally, we shall introduce the metric tensor A of the space defined by 

the curvlliner coordinates n', and shall denote by aSl,, ask, a$, the covari- 

ant, contravariant and mixed components of the tensor, so that 

ask = rs'rk, ask = p. rk, a: = r,mrk (1.3) 

The indications of accelerometers positioned along directions a, will be 

c 21 d2r 
ne, = nee,, n ==- g (4 (1.4) 

Here g(r) is the intensity of the Earth's gravitational field at point 

0 which characterizes the present position of the object and is determined 

by the radius vector r . 

Let v and w denote the absolute velocity and acceleration of point 0 

with respect to the 0151{2<3 system of coordinates. The covariant and con- 

travariant components of vector v are 

v, = askvk (1.5) 

where the dot indicates differentiation with respect to time. 

Differentiation of vector v = r,v' with respect to time gives 

In order to establish expressions for components m, and m' of vector w 

we shall use Chrlstoffel symbols rSk,nX of the first, and r,T of the second 

kind [3 and 43 and also symbols rc,,+, rck,s and r,:, rcf, defined as follows: 

Although these symbols are in their meaning analogous to Christoffel's, 

they differ from the latter in that they are not expressed In terms of com- 

ponents of the metric tensor. symbols TOO,$, rOk,s and r,:, r,: character- 

ize the nonstationary state of the n* reference grid. These symbols become 

zero If' the right-hand sides of the first set of Equations (1.1) do not 

explicitly depend on time. 

From (1.6), (1.7) and the definition of Christoffel symbols we have 
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U.+ =: Xs” + rm&m’Xn’ -f- 21?&txn* + r,:, W, = asrwT (I.9 
For stationary coordinates, Formulas (1.8) can be naturally converted to 

the usual formulas for covariant differentiation of vector v . 

NOW, from (1.4) and (1.8) 

Q = g3” + r?m$-Pxn* + 2r&P + r$ - g*, n, = as,nr (2.9) 
Here n8, P, h, g, are the contravariant and covarlant components of vec- 

tors A and g In the basic system. 

Vector 0 is given in the coordinate system tied to the Earth. It can 

be considered as given In the 01S1taT3 system only on the assumption of 

sphericlty of the Earth's gravitational field. 

We shall introduce a system of coordinates 01n1nan3 rigidly tied to the 

Earth. Its relation to the &5Lcag3 system will be defined by direction 

cosines afj (= aS*j = Cd), so that the unit vectors T), of n'-axes are 

rl5 = +I (1.20) 

In the system of coordinates &,q%sqs 

g = grad U, u = u @I’, qB, f+) (1.11) 

where U is the function of force of the gravitational field. Therefore 

g, = grad' uqlsY gs = grad’ UT$ (1..12) 

In these equations qle and '$ denote the covariant and contravariant 

components of locus of qt in the basic system. 

From Formulas (1.4),(1.9) and (1.12) we find the following expressions 

for values indicated by the accelerometers 

"6 = (z& f ~,&PJc~* -f- ,%'e$P' + r$--- grad’U~~)e~k (1.13) 

Here e,, denotes the covariant components of vector 8, with respect to 

vectors r, * 

2. We shall now derive equations of work of the inertial system. The 

problem is to determine coordinates X* from indications of accelerometers 

as given by (1.13). 

The first operation is to Integrate accelerometer Indications [2]. From 

(1.13) we obtain 

0 

+ x**(O) a,, to) (2.1) 

Resolving the left-hand side of Equation (2.1) with respect to n**, we 

get xk* = (xm*eS,) Esk /I? (2.2) 

Here E is the determinant, and .g*t the algebrakc complement of row s 

and column k of matrix I\e,,\l . Now 
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t 

&= XfdtfXqO) 5 (2.3) 
0 

If instead of e,, we have, as functions of X' and time the direction 

cosines rf, of vectors a, with respect to the axes of the gyro-stabilized 

platform, i.e. in relation to loci 0, of the system of coordinates 0,E1<a5: 

we obtain e, =rf&. 

Cn the other hand r, = (akr / &@) &. Therefore 

(2.4) 

Equations (2.1),(2.2),(2.3) and (2.4) will have to be supplemented w%th 

equations for T$ and formulas relat-ing $ with x8 and. time. The require& 

expressions are obtained from Equations [23 

E, = i (Sr x u) dt + -3 (Oh u = u&, e, = afqk (2.5) 
0 

Here an8 are proJections of vector u of angular velocity of rotation of 

the Earth on n*-axes, and a: the previously introduced direction cosines 

between axes t1tat3 and q1$n3. 

From the second equation of (2.5) and from (1.10) we find 

(2.6) 
Equations (2.6), in which p' are given by (1.11, fully define the value 

of 11: and rl', of the integrands of the right-hand sides of Formulas (2.1). 

The contravariant components $ 
dinates and the coordinates n k 

of'locl 4, In the basic system of coor- 
can be computed also in ,another way, Equa- 

tions (2.5) may be written in the differential form 

dt),fdtf~,Xu=O (2.7) 

From (2.7), by covariant differentiation of ill, followed by solution of 
the obtained equation with respect to n: and consequent integration, we 
find t 

11: = - s hi? rsm * d’ + I$, + (q, x u) *rkl dt + rlrk (0) cm 
0 

We shall introduce Levi-Civita symbols for the purpose of solving for the 
mixed products of vectors q,, u and rk in the lntegrands of (2.8) 

ekns = rk’(‘nxhh &kna = rk.(rnXrs) (2.9) 

With these the mixed product (I+ x u).rk can be written as follows: 

(qrxu).rk = en@71 EL IP t 
(2.10) 

But u1 = u-q = I&&, qrp = qpqp. Therefore Equation (2.10) becomes 

(nrXu). rk = ePtkqfq~q_a,lu~ (2.11) 

Introducing (2.11) into (2.8) we obtain 
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Finally, from the definitions of qk and 11: ’ and from the evident rela- tion r = nkqk., we have 

(2.13) 

Superscript 8 Indicates here summation from 1 to 3. 

We may note that by using Levi-Civita symbols, the first group of Equa- 
tions (2.5) can be solved for ,$ 

1 

aE(= c . G sijiiafu!,dt + ctf (0) (2.14) 

where J is the Jacobian (1.1)': 

Thus, for the case when directions 8, are arbitrary functions of R* and 

coordinates I*. 

In the inertial guidance system under consideration the gyro-stabilized 
platform is taken as the basic kinematic scheme. The angular displacements 
of the gimbal rings attaching the platform to the body determine the orlen- 
tatlon of the latter with res 

Equatlons'(l.2 
ect to axes e1eac3, coincident with axes of 

the platform. and (1;l) define the orientation of vectors 
of the fundamental base, while Equations e* = (X1, 312, X3, t), define those 
of the sensitivity axes of the accelerometers. 

es 
Therefore, the angular dis- 

placement of the platform suspension gimbal rings together with (1.2) and 
(1.1) determine the orientation of the body with respect to the base vectors, 
I.e. with respect to surfaces of wg= const coordinates, and together with 
e8=es(x1, 9, 9, t) Its orientation with respect to the axes of accelerometers. 

Directions 0. of sensitivity axes of the model considered in Section 2 
were not specified, except that these were not coplanar, and that their 
direction cosines with respect to Sk-axes were known as functions of I(' 
and time. The integration of Equations (1.13) WY carried out by means of 
separation of total derivatives from the sums **ea. Separation of varia- 
bles was made after the first Integration. We s~all'now investigate another 
method. 

3. We shall select the directions of the sensitivity axes II, so that 

each of the three accelerometers would register second derivatives with 

respect to time for one of the coordinates only. This can be 8chieved by 

selecting err so that e,,- 0 for s # k , and e.k = e,‘ # 0 for s=k. 

This selection means that a, Is normal to r* when or # 8 , and coincides 
therefore wlth vector r’ of the reciprocal base. This result could have 

been easily predicted, as vectors Fe are by? definition normal to surfaces 

of coordinates of equal magnitude, i.e. they are gradient vectors. From th 

follows ..s 1 ,^ . . 

Taking Into account (3.1), expressions (1.13) for the indications ne, of 

accelerometers become (do not sum with respect to s f ) 

IS 

In order to avoid numerical computations on accelerometer readings prior 

to Integration of these, we shall transform Equations (3.2) by subtracting 

[Vex@ (USS)'] (a"")-". from the left and right-hand sides of these. We then 

have 
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f I?,$c~‘x”’ + 2f,ix”’ + I’,$ - grad’ Uqf 1 

Integration of (3.3) gives 

0 

(3.3) 

Equations (2.1'0, (2.5) and (2.6), or (2.12) and (2.13) remain, of course, 

valid for the computation of $ and q8 . 

The orientation of directions of 

the sensitivity axes c, Is given by 

Orientation of the object Itself In 

relation to directions a, Is found from the Table (3.5) in conjunction with 

the angular displacement of gimbal rings of the platform. 

4. We shall now consider Equations (3.4), (2.14), (2.5), (2.6) and (l.llh 

or (3.4), (2.12), (2.13) and (1.11) for the particular case of orthogonal 

coordinates X1, n2, X3. 

In this case vectors of the basic system are normal to each other. Vec- 

tors of the reciprocal basis coincide directionally with those of the basic 

system. Only the diagonal components cSg , a,, of the metric tensor are not 

equal to zero. These are expressed in terms of Lame operators h, by 

ass = 1 / ass = hz (4.1) 

For orthogonal coordinates only the following Chrlstoffel symbols of the 

first and second kind c41 are different from zero: 

Taking Into account 

Now Equations (3.3) 

h ah. 
_ -5 0 r,,, y = h, 3- , aln h 

ha2 ax,; w 
1’8: = -y-y (4.2) 

(4.1) and (4.2) we have 

(lnj@)* = _ r sXk* _ r; 
ah (4.3) 

can be written (do not sum with respect to 8 ! ) 
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$ @,x8*) = ne, - h, rr;xs- + rg:pC*-xs* + 

-/- r,; (Xk’)” + 2r Otxk* + roi - grad’ UT$] (4.4) 
where summation Is to be carried out with respect to k which is different 

from 8 . Accordong to (1.7) and (4.1) 

and for orthogonal coordinates 

r oic,s==- 0s.k r 

This is because 8 (r,.~),/dt = 0, From (4.4) we find 

- grad* UT@ 1 dt + h8 (0) x8* (0) 
t 

X6’ = & (x-h,), xs = X8’ dt + x* (0) 
8 s 

0 

(4.5) 

(4.6) 

(4.7) 

Formulas (4.7) replace for orthogonal coordinates Formulas (3.4). 

We shall now revert to Formulas (2.12), (2.13) and (2.14),(2.5), (2.6). 

Taklng Into account (4.1) and (4,2), Equations (2.12) can be slmplif‘ied and 

presented ast 

+ - 
s PJ: (r&V+ roZ+ r&**) + ~ll"(rG + rGV+ r,&m*) + 

0 

+ ~p*k~~~~~~~~~~~l dt + I$ (0) (4.8) 

Equations (2.13), as well as (2.5) and the last of Equations (2.6) rert*ain 

unchanged. The latter equation determines n*. The first of Equations (2.6) 

takes the form 
(4.9) 

In the case of an orthogonal coordinate grid J = h,h,h, Formulas (2.14) 

will have the form 

I (4.10) 

a: = 
s 

&$- eijkafu; dt + c$ (0) 
0 

1 I k 

and the directlon cosines (3.5) are 

I t3 

given in the table (4.11). 

In the case of an orthogonal curvilinear system of coordinates, it is 
evidently possible to design an inertial guidance system based on a control- 
lable gyro-frame, as In this case directions a, form a rigid orthogonal tri- 
hedron which can be the trlhedron of the gyro-frame platform. 

In order to keep the trihedron of the gyro-frame platform coincident with 
the trihedron formed by vector's r, of the fundamental base, moments will 
have to be applied to the gyroscopes of this frame. It is assumed that at 
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the initial moment the two trlhedrons coincide. 

For the formulation of these control moments we shall need expressions 
for the projections 
trihedron rl, ra, r, 

CO(~) of the vectorof absolute angular velocity of the 
on its edges expressed as functions of coordinates s*, 

their derivatives, and time. These formulas are derived below. 

5. We shall introduce notations ps = dr,l dt , and shall represent vec- 
tors D. as follows: 

From the definitions of Christoffel and of the r;, symbols 

Therefore 

(5.1) 

(5.2) 

(5.3) 

IJet Pn and $, denote respectively the covarlant and contravariant com- 

ponents of 0, with respect to vectors rr of the fundamental base. From 

(5.3) we find 

Cn the other hand, (do not sum with respect to s ! ) 

where r, / I/a,, are unit vectcrs of dltectlons r, . Consequently 

(5.5) 

(5.6) 

As vectors rp, of the fundamental base form a rigid trlhedron, we have 

d rs 0 x rs --=- 
dt If< v< (5.7) 

where UI Is the absolute angular velocity of this trlhedron. 

Substituting (5.7) into (5.6), we obtain expressions for vectors P, In 
terms of the absolute angular velocity of rotation of the base 

( I/a,,)- 
PS = 7 rs + fa x rsr psk = + (w x rs)-rk (5.8) 

With orthogonal r, the nondlagonal components of the metric tensor are 

zero, therefore for s # k Equations (5.8) become 

psk = @ x rs)- rk or psk = an (In x h> ’ rk (5.9) 

Using kvi-Civita symbols we arrive at Equations Psk = On&,.&, from which, 

after multlpllcatlon by e0.k .(do not sum with 

the contravariant components ~1" of vector UI 

Wn = cnskfbk 

Reverting to (5.4), we find expressions an 
derivatives of these and time 

respect to s, or I ), we find 

In the fundamental base 

(5.10) 

and 01 In terms of I‘, 
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Required projections 0~~) on directions r, 

covarlant components u), of vector U) 

01 = a&lP (5.11) 

are easily found from known 

(5.12) 

In (5.12) indexes n and k are different. From (4.2) it follows that 

Chrlstoffel symbols in (5.12) are not zero, only when either n = m , or 

k=rn. As according to (4.1) h, = I/'GS, and ~~~,~,~s, and with Levi- 

Civita synbols ESnk = rt 1 !J, where the sign of the right-hand side is 

determined by the order of indexes s, II, k ,-we obtain from (5.12) 

acl) = &- (r,,, 3~m + ra2,3) = - & (r,,, 2~m + ro3,2) (123) (5 13) 

Here the first of the right-hand side expressions correspond to the order 

of Indexes s, n, k : 1 2 3, 2 3 1, 3 1 2, and the second to 1 3 2, 2 1 3, 

3 2 1. The two different expressions of Formulas (5.13) for each projection 

otS) are identical, as It follows from (4.2) and (4.6) that rSk,s = - rss,k 
and rok, s = - &s. k. 

In the particular case of I'o,,t equal zero, I.e. when the set of coordl- 

nates x' does not change its position with time in the coordinate system 

0 E1PE3 1 .., we have 

% = h2h3 -L rzrn, 3X”“’ = - & 1‘,,, 2I.P 
23 

(123) (5.14) 

In this case, using expressions given In (4.2) for representation of 

Chrlstoffel symbols by Lame operators, we arrive at the following expressions 

for wcS) : 
1 ahz 

ql) = -iLQw x 
2. , 1 ah3 

I hz 8x2 
x3- (123) 

6. So far, in dealing with nonstationary curvilinear coordinates, we have 
been conslderlng the general case in which the coordinate surfaces n*= const 
could arbitrarily change their position with tl;:e, relative to the trihedron 
0 E1f2E3 This Is seen from Formulas (1.1) which contain the parameter of 
time.‘expilcitly. However, the character of this dependence was not specified. 

One particular case of such dependence is of special interest. It Is the 
case In which the curvilinear coordinates n*, defining the position of the 
object In the coordinate system 0111"l=.r1= jj rl Idly tied to the Earth, are sta- 
tionary with respect to the trlhedron O1qln n3 . Then 

7)s = 11s (x1, 9, 9) (6.1) 

The w' coordinates are not stationary In relation to the basic system of 
Cartesian coordinates 0,E1E2T3. 

We shall assume that the angular velocity of rotation of the Earth IS 

constant and that Its dlrectlon does not change with respect to the system 
of coordinates 0,c1:'C3. We note that so far no use has been made of this 
assumption. 

Let axis 0,T3 of the coordinate system 01=1~a~3 coincide with f Oln , 
and the latter, In turn, coincide with vector U of the angular velocity 
of the rotation of the Earth. We shall also assume that at the initial 
moment (t - 0) the two trlhedrons 01s1FzF3 and 01r11r12? fully coincide. 
Then, for any Instant 
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For the computation of components of the metric tensor, Lame operators 
and Christoffel symbols, we can assume in this case t to be equal to zero. 
The validity of this statement follows from the fact that the set of H‘ 
coordinates moves as a single entity (rotates with angular velocity u), and 
that the properties of the space defined by these coordinates are independent 
of time. This, of course, can be established also by direct calculation. 

From (1.7) and (6.2) we derive for ror,s and T00,l expressions which 
are also independent of time 

r r 
00. s = - f gi IW + (q2N (6.3) 

7. We shall consider in conclusion two examples, the case of Cartesian 
coordinates x"= 5*, and that of geocentric coordinates nl= r, n2 = x , x3=(p, 
when 

T)' = r cos cp COSh, q2 = r cos cpsinh, ?js = r sincp (7.1) 

We shall proceed from Formulas (4.8), (4.7), (2.13) and Table (4.11). 

In the case of Cartesian coordinates us= t',, 
bols and 
unity. 

From (4.q) an’d (45j ;;eh;;Eo. The Lame operators h, r,;, rc', rck 8, r 
all of the Christoffel sym- 

are equal to 

t t 

Es’ = \ (n,, + grad’vq;) dt fi 5”’ (0), 5” = $ E”dt + E” (0) (7.2) 
0 0 

(7.3) 

Assuming as in Section 6 the coincidence of the two trihedrons 51s2? 
and n1n2q3 at the initial moment, and noting that IL: = u, .I = us = 0;. 
when axis 0,n3 cgincifes with the axis of rotation of the 
from (7.3) Tf = q” = q = q3 = 0, q3= 1. 

E&th,'we obtain 
For the remaining 

sets of diff&ent?al e$uat120ns of 'the second order 
11: we have two 

t t t t 

qf = 
s 

?+dt; q; = - T&dt, 
s 

11; = q;udt+ 1 (7.4) 
s 

0 0 0 0 

Assuming as in Section 6 u = const , we find from (7:4) 

q; = cos ut, qi = - sin ut, qf = sin ut, q; = cos ut (7.5) 

From (2.13) we have nk = $&" , and from (7.5) 

q1 = El cos ut + f2 sin ut, q2 = - E1 sin ut + E2 cos ut, 99 2 E3 

Equations (7.5). 

We shall now turn to the second example. Here the Lame operators are 

l h,=l, h, = r cos cp, h, = r (7.6) 

Chrlstoffel symbols of the second kind which differ from zero, are 

r,; = r,; = -m cp, r,; = - r c0s2 cp 

r,; = sin v cos cp, r,: = - r (7.7) 

In accordance with (6.3) and (7.1), the following symbols are also nonzero 

rot = - u2r cos2 cp, r,;= u2 sin cp cosip, r,f = u / r 

ri, = - ur cos2 cp, r,i: = u sin cp cos rp, r,;= - ~tiicp (7.8) 



Taking into account (7.6), (7.7) 
sented In the form 

and (7.8), Equations (4.7) can be pre- 

t (7.9) 
r’ = ’ [nl + r (cp’” f (u + A’)% cos.2 (p) + grad’ U$] dt + r’ (0) 

s 
0 

t 

r cos cph’ = S[ nl - (h' + 2~) (r' coscp - rcp'sincp) + kV grad’U$ dt + 1 
0 

+ r (0) coscp (0) h' (0) 

t 

rp’ = n, - (r’cp’ + r sin cp:cos cp (1L'+ #') + f grad’U$] dt -I- r (0) up’ (0) 

0- 

t t t 

= r’dt+ r(O), s j”= * s & (r ~0s cph’) dt + h (0), 

,* 
9 = \ +- (rep’) dt + cp (01 

0 0 b 

And again taking into account (7.6), (7.7) 
be presented in the form 

and (7.8), Equations (4.8) can 

Ir COG 'p (h' + u) - qfr'p' + u ($T$ - $q",) ra cos cp] dt + q:(O) 

(7.10) 

+ u @l; - +I;1 I dt + 112; (0) 
t 

qy=- 
S[ 

q~sincpcoscp(h.+u)+q~~+q~~+ucos~(q~q~-q?fq~) dt+$(O) 
I 

0 

For n = const the following values of $ satisfy Equations (7.10) 

q; = co.9 cp cos a, 

$ = coscp sin A, 

ll; = sinq, 

q; = - sin h ( 
rcosq 

qf = _ sin cp co9 J. 

co9 a rl;=---7 
I’ coscp 

q;= _ sincprsin h 
(7.11) 

r 

q;= 0, $= 
cos cp 

r 
It may be noted that for u = const . the value of 

directly from the definition )I'= l&*ra/As 
s(: can be computed 

Ilk = $E", t 
and from Equations (7.1) and 

without recourse to 4.8). This may be used as a proof of cor- 
rectness of calculations. 

Ex ressions for n1n2n3 
(2.13p and (7.10). 

coincident with those of (7.1) are obtained from 

Equations for computln 
using Formulas (4.9) and 'i 

,!! are obtained from (4.10), (7.5) and (7.3) by 
2.6) for (4.8) and (2.13) 

1 

cz: = 
s 

a: udt + CZ~ (0), a: = - 
s 

ai udt -t a; (0), uf = a: (0) (7.12) 

0 0 

From these we,obtain fork a;, the same values, as in the case of Cartesian 
coordinates x'=E" , for 711. we find 
cl= r COScp coS(A+ut), 

From Equations _l;lk=$$ 
t2 = r coscp sin (h + ut), t3 = r sincp. After that, with 
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reference to (4.11) and (7.6), we obtain the direction cosines of sensitivity 
axes of accelerometers as follows: 

E’ 1 EB 1 5” 

@l cos cp cos (h + ut) coscpsin (h+ ut) sin cp 
% -sin@+ at) cos(1+ ut) 0 

es -sinrpcos(h + ut) -sinrpsin(h+ al) costp 

Finally, from (5.13), (7.6), (7.7) and (7.8), we find 

w,i) = (U + h') sincp, O@) = - 'p', wts) = (U + h') coscp 
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