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An inertlal system independently defining the coordinates and orientation of
an object in space by means of accelerometers and gyroscopes [1 and 2] is
investigated. The general case of determination of arbitrary, nonstationary
and nonorthogonal curvilinear coordinates is considered, as distinct from
[2] in which these coordinates were Cartesian. Equations are devlded for
the unperturbed functioning of such an inertial system with 1ts kinematic
model based on a gyro-stabllized platform, or a controllable gyro-frame.

1, We introduce a right-hand orthogonal system of coordinates ¢,g'e2e3
with its orilgin at the center of the Earth, and its axes permanently oriented
in the direction of fixed stars. The position of the moving object will be
determined by the position of any of its point ¢ 1in relation to ¢,glg2g?

by coordinates x!,x®,x®, so that
ra
gs == gs (Xl, %21 Ms, t)v J Sl S n2 ) :/1:0 (11)

Here and in the following text, Latin indexes run from 1 to 3. According
to the second expression of (1.1) the Jacobian of transformation of function
' with respect to coordinates x*» 1s different from zero. This means that
relationships (1.1) are reversible throughout the region of possible motions
of the object.

The model of this 1lnertial guldance system is visuallzed as follows. At
its base 1s a gyro-stabilized platform, the axes of which coincide with the
directions of axes #* of the coordlnate system 0:8*€%€®, The platform car-
ries three accelerometers set to a special pattern. The unit vectors of
direction of the sensitivity axes of the accelerometers wlll be denoted by
¢, , and their indications by . We shall assume the kinematic pattern to
be such, as to provide the required dependence of directions e, from coor-
dinates x*, determined by the inertial system and from time ¢

e, = & (7'11 %%, %37 0.

990
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We assume that dlrectlons e, are not coplanar.
We shall introduce a fundamental coordinate base [3 and 4] defined by
vectors or

r,— r =B, (1.2)

s E‘s-’
where r 1s the radius vector from the center of the Earth 0, to point ¢
of the object, and gs are unit vectors of axes §s. The Latin superscripts
and subscripts in the second equation of (1.2) indicate here and in the fol-
lowing text summation in s from 1 to 3. It follows from (1.10) that vectors
r, are not coplanar. We shall introduce a reciprocal base deflned by vectors
™ reciprocal to vectors br,.

Finally, we shall introduce the metric tensor 4 of the space defined by
the curviliner coordinates x*, and shall denote by ay, a%, g-, the covari-
ant, contravariant and mixed components of the tensor, so that

ke

Qs = Tgo Ty, as* = ré.rk, as = ryer* (13)
The indicatlions of accelerometers. positioned along directions e, will be
(2] d2r
Ne, = N-&,, n=-—z—g(r) (1.4)

Here g(r) 1is the intensity of the Earth's gravitational fleld at point
0 which characterizes the present position of the object and is determined
by the radius vector »r .

Let v and W denote the absolute veloclty and acceleration of point ¢
wlth respect to the 01g1§2§3 system of coordlnates. The covarlant and con-
travariant components of vector v are

ar
ot

where the dot indlcates differentiation with respect to time.

v = n¥ + ors, v, = agpv* (1.9)

Differentiation of vector v = r,v* with respect to time glves
or or d?r
—_ See 28 nySeagke 5 ge il 16
W= IX —1—6ka % —{—2——at R (1.6)
In order to establish expresslons for components g, and y* of vector w
we shall use Christoffel symbols Fshn1 of the first, and I:z of the second
kind [3 and 4] and also symbols I'gy 4, Lox,s ana Too, Lok, defined as follows:

o2r o%r
roo,s == B - I, I‘Ok,s = atauk oI, Fog = as”I‘OO,n, _ 1-\0]8‘ = a‘ml"ok,,, (17)

Although these symbols are in thelr meaning analogous to Christoffel’s,
they differ from the latter in that they are not expressed in terms of com-
ponents of the metric tensor. Symbols Fooﬁy Fohs and I}ﬁ, FO; character-
ize the nonstationary state of the »* reference grid., These symbols become
zero 1f the right-hand sides of the first set of Equatilons (1.1) do not
explicltly depend on time.

From {1.6), (1.7) and the definition of Christoffel symbols we have
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o . 8, m. ne .
W = 1" A D™ %™ + 20pax™ + s, Wy = qg W' (1.8)
For statlonary coordinates, Formulas (1.8) can be naturally converted to
the usual formulas for covariant differentiation of vector v .
Now, from (1.4) and (1.8)
nt =% + Dpawmum + 20w + Tob — g8, n, = a0’ 1.9
Here n®, g% ng g; are the contravarilant and covariant components of vec-
torse n and g 1in the basic system.

Vector g 1s given in the coordinate system tied to the Earth. It can
be considered as given in the 0,&8*E2E® system only on the assumption of
sphericlity of the Earth's gravitational fileld.

We shall introduce a system of coordinates ¢,m*n®n® rigidly tied to the
Earth. Its relation to the (0,E'E”E® system will be defined by direction
cosines Qi (= ol = a{f), so that the unit vectors n, of n*~axes are

N = alf, (1.10)
In the system of coordinates (J,, ﬂlﬂgﬂa
g = grad U, U=1U@n, 1% n? (1.11)
where [ 1s the function of force of the gravitational field. Therefore
g, = grad! Un, g* = grad' Un} (1.12)

In these equations 1, and ‘nf denote the covarlant and contravariant
components of locus of ¥; in the basic system.

From Formulas {1.4),(1.9) and (1.12) we find the following expressions
for values indicated by the accelerometers

ne, = (6% + Tppxmxn + 2™ + Tof — grad'Unkyey  (1.13)
Here e,, denotes the covariant components of vector e, with respect to
vectors »r,.

2, We shall now derive equations of work of the inertial system. The
problem is to determine coordinates x* from indications of accelerometers
as given by (1.13).

The first operation is to integrate accelerometer indications [2]. From

(1.13) we obtain
¢

whey =\ Ing, + we,; — (D™ + 2Cokum + Iy — grad Uneq] dt +

0
+ #*(0) 3y (0) (2.0

Resolving the left-~hand side of Equatlon (2.1) with respect to ukx*, we
get W = (megn) B [ E (2.2)

Here F 1s the determinant, and gz** the algebralc complement of row g
and column % of matrix e, .|| . Now
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t
k= Sx" dt + x* (0) (2.3)
0
If instead of e,, we have, as functions of x»* and time the direction

coslines frﬁ, of vectors e, with respect to the axes of the gyro-stabllized
platform, i.e. in relation to loci g, of the system of coordinates 0,g%E£2£g3
we obtain e, =715,

On the other hand r, = (@& / 3%*) §;. Therefore
1
e = €Tk =T, (2.4)
- %
Equations (2.1),(2.2),(2.3) and (2.4) will have to be supplemented with
equations for 1}" and formulas relating 'q with ;{3 and time. The required
expressions are obtained from Equations [2]

= S Exwd+E©0), uw=um, E=oan, (2.5)

Here p,® are projectlons of vector u of angular velocity of rotation of
the Earth on n*-axes, and a?’ the previously introduced direction cosines
between axes g'£?e® and n'nPnR.

From the second equation of (2.5) and from (1.10) we find
ke ok = o ghm & K — gklBs
M=M= %87 n* = ol (2.6)

Equations (2.6}, in which ¢* are given by (1.1), fully define the value
of ni‘ and 1*, of the integrands of the right-hand sides of Formulas (2.1).

The contravarliant components 11, of loci in the baslc system of coor-

dinates and the coordinates n* can be computegl also in another way. Equa-

tions {2.5) may be written in the differential form ;
dn, /dt +-qxXu=20 2.7
From (2.7), by covariant differentiation of 1w, followed by solution of

the obtalned equation with respect to ’f) and consequent integration, we
find

t
W= -S [ (T + T+ x wer'ldt + 2/ © @8
9

We shall introduce Levi-Clvita symbols for the purpose of solving for the
mixed products of vectors N, u and rk in the integrands of (2.8

8xng = Ty (PpXTg), gkns = pk.(r" X rf) (2.9)
With these the mixed product (i, X u)-r¥ can be written as follows:

(X W) Tk = eplkn,_u, (2.10)
But u, = u.-r, = u:n?an,, Ny = 'q‘faqp. Therefore Equation {2.10) becomes
k tk i
(nXuy-r" = e’ NN agyaniy (2.11)
Introducing (2.11) into (2.8) we obtain

, ,
mf = —\ 0 (T + L) + & naenmifui] dt + nf ©) @12
o
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Finally, from the definltions of nk and ﬂk , and from the evident rela-
tion r = nkn,., we have /
e b, 3G
=gl S (2.13)

Superscript & indlcates here summation from 1 to 3.

We msy note that by using Levi-Civita symbols, the first group of Egqua-
tions {2.5) can be solved for Bf

H
i . X
af =\ 7 el + af ©) 244

0
where J 1s the Jacoblan (1.1).

Thus, for the case when directions e, are arbitrary functions of x* and
time, the unperturbed functioning of the inertial system 1s defined by Equa~-
tions 22.1; to {2.3), 22.5) {2.14) (2.6% and (1.11), or by equivalent equa-
tions (2.1) to (2.3), (2.12), {2.135 and (1.11). These equations determine
coordinates x*.

In the inertial guldance system under consideration the gyro-stabllized
platform is taken as the basic kinematic scheme. The angular dlsplacements
of the gimbal rings attaching the platform to the body determine the orien-
tation of the latter with respect to axes e'z?e®, colncident wilth axes of
the platform. Equations (1.2§ and (1.1) define the orientation of vectors
of the fundamental base, while Equations e, = e, (¢!, %% 3, ¢} define those
of the sensitivity axes of the accelerometers. Theréfore, the angular dis-
placement of the platform suspension gimbal rings together with (1.2) and
{(1.1) determine the orientation of the body with respect to the base vectors,
1.e. with respect to surfaces of x*= const coordinates, and together with
e;=eAx1,K”,%ﬂ 1) its orientation with respect to the axes of accelerometers.

Directions e, of sensitivity axes of the model considered in Section 2
were not specified, except that these were not coplanar, and that their
direction cosines with respect to &*-axes were known as functions of «x*
and time. The integration of Equations {1.13) was carried out by means of
separation of total derivatives from the sums " ¢y. Separation of varila-
bles was made after the first integration. We shall now investigate another
method.

3. We shall select the directions of the sensitivity axes e, so that
each of the three accelerometers would register second derivatives with
respect to time for one of the coordinates only. This can be achleved by
selecting e, so that e, =0 for s # » , and ¢, =¢,# 0 for g =¥ .
This selection means that e, 1s normal to r, when & # 8 , and coincides
therefore with vector * of the recilprocal base. This result could have
been easily predicted, as vectors »* are by definition normal to surfaces
of coordinates of equal magnitude, i.e. they are gradient vectors. From this

follows r i (3 1)

es—-ﬁ;—;’ ess—Vaas
Taking into account (3.1), expressions (1.13) for the indications n, of
accelerometers become {do not sum with respect to 8 t)
Ro, = Viﬁ (25 + D™ %™ -+ 2Toon™ + Ty —grad Un)  (3.2)
a
In order to avold numerical computations on accelerometer readings prior

to integration of these, we shall transform Equations (3.2) by subtracting
{V/,%* (a*)] (a*5)*:. from the left and right-hand sides of these. We then

have
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4 ¥ —p, —_ 1 e (InVa®) +

dt V;s—s_ €s Vass

+ Tosn™n™ + 2Cox™ + T — grad' Unj) (3.3)
Integration of (3.3) gives

t
e = (e — g 0 (0 Y o D™+ 2L 4 Ted
a 0 a

— grad’ Unf] Vat + 2O (3.4)
gra le]} + Voo

t
> = W)VE w = (e dt + % (0)
G -

Equations {(2.14), (2.5) and (2.6), or (2.12) and (2.13) remain, of course,

valid for the computation of 1); and 17°.

The orientation of directions of
e sens vity axes e s given by
gl E? £3 th 1tivit , 1s given b
. . s 3 5) Equations (3.1), or this can be taken
r & T o%s T oFs : £
o = =L > rom a corresponding table of direction
V a Vass a cosines.
Orientation of the object 1tself in
relation to directions e, is found from the Table (3.5) in conjunction with
the angular displacement of gimbal rings of the platform.

4, We shall now consider Equations (3.%), (2.14), (2.5), (2.6) and (1.11)
or (3.4), (2.12), (2.13) and (1.11) for the particular case of orthogonal
coordinates x*, x%, x°.

In this case vectors of the baslc system are normal to each other. Vec-
tors of the reciprocal basis colncide directionally with those of the basic
system. Only the diagonal components a* , g, of the metric tensor are not
equal to zero. These are expressed in terms of Lamé operators »n, by

gy, = 1/a* = I (4.1)

For orthogonal coordlnates only the following Christoffel symbols of the
first and second kind (4] are different from zero:

Ohs . s dlnh, . oh
Fss,k = — hs W0 ’ Fsk = st = o v 1 sk,s — st.s = hsa_uf
L S T T s A SO A B (4.2)
B hy? owy e T P )
Taking into account (4.1) and (4.2) we have
(InV ) = — Lgn™ — T (4.3)

Now Equations (3.3) can be written (do not sum with respect to 8! )
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d S 8e 8 . .
Q}’(ksxs') = R, — h, [Toen® + Pksxk x4+

k. ke

+ Tii ()2 + 2Cgen" + Ty — grad’ Unj) (4.4)

where summation 1s to be carrled out with respect to % which is different
from g . Accordong to {1.7) anda (4.1)

or 1 9
Pooo =G e Tw=jzga T
s
d%r 1 o
Topys = —— o 1 Ty = ;o —— »
ok,s PPN 89 0t FE ronk Ty ('4.5)

and for orthogonal coordinates
Tor,s = — Toet (4.6)
This 1s because @ (rgery) /9t = 0. From (4.4) we find
t
e = gy — by (T + T -+ Tt ()2 + 2T + T —

0
— grad’ Un$)] dt + h, (0) = (0)
1
X = hy,  w = Sx dt -+ x5 (0) (4.7)
8
0
Formulas (4.7) replace for orthogonal coordinates Formulas (3.4).
We shall now revert to Formulas. (2.12), (2.13) and (2.1%), (2.5), {2.6).

Taking into account {4.1) and {4.2), Equations {2.12) can be simplified and
presented as '

nt = — § (0 Tl 4 Tof + ™) + 07 (Tomt + Tim™ + Tonaid™) +

o :
+ e nPrihitipuslde -+ i (0) (4.8)
Equations (2.13), as well as {2.5) and the last of Equations {2.6) remain
unchanged. The latter edquation determines n%, The first of Equations {2.6)
takes the form 1 6&8

koo o 4
M = % hE auk (4.9)

In the case of an orthogonal coordinate grid J = h,h h, Formulas {2.14)
will have the form

: (4.10)
. gt g2 g3
ak = —-Jm-a.. aiul dt + o (0) i ] i
! hohhy, TikTUn ! 4.1
AR AN R )
and the direction cosines (3.5) are * Ry ax’ | hy 8’ 7;: ax’

given in the table (#.11).

In the case of an orthogonal curvilinear system of coordinates, it 1is
evidently possible to design an inertial guldance system based on a control=~
lable gyro-frame, as in this case directlons e, form a rigid orthogonal trl-~
hedron which can be the trihedron of the gyro-frame platform.

In order to keep the trihedron of the gyro-frame platform coincident with
the trihedron formed by vectors », of the fundamental base, moments will
have to be applied to the gyroscopes of this frame. It is assumed that at
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the initial moment the two trihedrons coincide.

For the formulation of these control moments we shall need expressions
for the projections ®) of the vector of absolute angular veloeclty of the
trihedron »,, ?,, I, on lts edges expressed as functions of coordinates x*
their derivatives, and time. These formulas are derived below.

>

5. We shall introduce notations ps = drs/ dt , and shall represent vec-
tors p, as follows:

or
= —— " 0.1
P = on + atau ©-1)
From the definitions of Christoffel and of the TJ§, symbols
a*r m arr m =
e snfms oo Tostm (5.2)
Therefore ”
ne m
Pe = (Tnx™ 4 Tgg) (5.3)

Let p, and p, denote respectively the covariant and contravariant com-
ponents of p, with respect to vectors r, of the fundamental base. From

(5.3) we find pf - I‘J,x"' + 1-\01;’ Dok = amiP™ (5.4)

On the other hand, (do not sum with respect to 8 ! )

,— [Vass( Vass)] (5.5)

where 1,/ 'V-a—ss are unit vecters of ditections », . Consequently

_ (Vayy r,

b= Ve Ve,

As vectors r, of the fundamental base form a rigid trihedron, we have
_d_ r,  Oxr

dt Va; Va—ss—

where w 1s the absolute angular velocity of this trihedron.

rt Voo (5.6)

(5.7)

Substituting (5.7) into (5.6), we obtain expressions for vectors p, in
terms of the absolute angular velocity of rotation of the base
ps = (llf/i r,+ oxr,, psk=M+(wxr,)-rk (5.8)
88
With orthogonal r, the nondiagonal components of the metric tensor are
zero, therefore for 8 # x Equations (5.8) become

Psk = (© x 1)1y or Py = @" (Tq X T)e Ty (5.9)

Using Levi-Civita symbols we arrive at Equatlons pg = ®"€nek, from which,
after multiplication by e2»*x ,(do not sum with respect to g, » ! ), we find
the contravariant components w® of vector @ 1in the fundamental base

= g™kp (5.10)
Reverting to (5.4), we find expressions " and ®; 1n terms of «*,
derivatives of these and time

n

®
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0" = gk (I 0™ + Tos i), ®; = q0" (5.11)
Required projections ) on directions p, are easily found from known
covariant components w, of vector g

o, _
O5) = = Vassesnk (an, ™+ Pon, k) (5.12)

aSS
In (5.12) indexes n and % are different. From (4.2) it follows that
Christoffel symbols in (5.12) are not zero, only when either 5 =m , or
k =m . As according to (4.1) h, = ]/ass, and J=h1h2h3, and with Levi-

Civita synbols € = -+ {1 /J, where the sign of the right-hand side is
determined by the order of indexes s, n, k , We obtain from (5.12)
1 , 1
Oq) = j= (Tom, gx™ + Lo 5) = — m(rsm. 2X™ + Log,0) az (5 13)

Here the first of the right-hand side expressions correspond to the order
of indexes 8, n, ¥ : 1 23, 231, 31 2, and the second to 1 3 2, 21 3,
3 2 1. The two different expressions of Formulas (5.13) for each projection
@) are identical, as 1t follows from (4.2) and (4.6) that Iy ; = — Iy
and Ty o = — Foe

In the particular case of T,,,, €qQual zero, i.e. when the set of coordl-
nates x' does not change its position with time in the coordinate system

0,£'€%€3, we have
1 1 5
W) = Tk Fgm, g™ = — Traha I am, 2 ®™ (123) (514)

In this case, using expressions given in (4.2) for representation of
Christoffel symbols by Lamé operators, we arrive at the following expressions

for W(s)
A O o 4 O

/13 6%3 ! hz an2

6. So far, in dealing with nonstationary curvilinear coordinates, we have
been considering the general case in which the coordinate surfaces x*= const
cou}d arbitrarily change their position with tiie, relative to the trihedron
0,£'€2£3, This is seen from Formulas (1.1) which contain the parameter of
time explicitly. However, the character of this dependence was not specifled.

One particular case of such dependence 1s of special interest. It is the
case 1in which the curvilinear coordinates x*, defining the position of the
object in the coordinate system 0,n'n?n? rigidly tied to the Earth, are sta-
tionary with respect to the trihedron 0,n'n*n® . Then

0y) = — (123)

ns = n® (x), »2, %%) 6.1)

The »x' coordinates are not stationary in relation to the basic system of
Cartesian coordinates ¢,gle2€”,

We shall assume that the angular veloclty of rotation of the Earth is
constant and that its direction does not change with respect to the system
of coordinates 0,£'£2f®, We note that so far no use has been made of this
assumption.

Let axis 0,f°® of the coordilnate system 0,7'¢%€® coincide with 01ﬂ!r
and the latter, in turn, coincide with vector u of the angular velocity
of the rotation of the Earth. We shall also assume that at the iniltial
moment (¢ = O) the two trihedrons 0,8'€2¢3 and 0,n'n?n® fully coincide.
Then, for any 1nstant

El= n'cos ut — 2sin ut, 2 ==yl sin ut + % cos ut, g3 =3 (6.2)
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For the computation of components of the metric tensor, Lamé operators
and Christoffel symbols, we can assume in this case ¢ to be equal to zero.
The validity of thils statement follows from the fact that the set of x*
coordinates moves as a single entity (rotates with angular velocity u), and
that the properties of the space defined by these coordinates are independent
of time. Thils, of course, can be established also by direct calculation.

From (1.7) and (6.2) we derive for T,,,, and T,, , expressions which
are also independent of time ’

ot o oot

ok, s = “(axk ¢ ok aﬁ) ' T

uz 9
0.5 =— 5 5 [+ M2 (6.3)
T. We shall consider 1in conclusion two examples, the case of Cartesilan
coordinates u*= €%, and that of geocentric coordinates wul=p, =1, w3=0,
when N = r cos ¢ cos A, 12 = rcos ¢sin A, 7 = rsing (7.1)

We shall proceed from Formulas (4.8), (4.7), (2.13) and Table (4.11).

In the cage of Cartesian coordinates «*= g*, all of the Christoffel sym-
bols and F K Fo are zero. The Lamé operators A, are equal to
unity. Frost (4. %) Y (4008)s we have

t t
B = g\nes -+ grad Un)) dt + £ (0), t = S Edt -+ £ (0) (7.2)
0

0
t

th i
= S P nPnjulde + nf (0) (7.3)
]

Assuming as in Section 6 the colncidence of the two trihedrons gle®e®
and n'n?n® at the initial moment, and noting that u} = u, nl=ul2="0,.
when axis 0,n® cginciges wilth the axis of rotation of the Ear'ch "we obtain
from (7. 3) " 1= 'r] = 0, n?;: . For the remaining "]k we have two
sets of differential equations of the second order

t t t t

n=— x nJudt + 1, n2 S‘r]ludt n=— S naudt, n= % niudt+ 1 (7.4)
0 0 0 0

Assuming as in Section 6 u = const , we find from (7.%)

N1 = cos ut, N, = — sin ut, n? = sin ut, N2 = cos ut (7.5)
From (2.13) we have nk = n;g's , and from (7.5)
N = & cos ut 4 &2 sin ut, 12 = — E!sin ut 4 &2 cos ut, P =10

which is in agreement with (6.2). Using (4.10), (4.9) and (2.6) for (4.8)
and (2.13) we find af , and from (4, 10; we obtain for ¢f, the same expres-
sions as for 711 After this, from (2.6) we arrive again at Equations (7.5).

We shall now turn to the second example. Here the Lamé operators are

* h =1, hy = rcos @, hy=r (7.6)
Christoffel symbols of the second kind which differ from zero, are
1
2 — 12 _
I121 - Plz -

1
~, Tp=Tg=—ug, PR=TS=—, T,g=—rcos’p

-
I 1 __
I‘22 = sin @ cos @, Fg=—1r (.7
In accordance with (6.3) and (7.1), the following symbols are also nonzero
[ = — u?rcostq, Fo=u?singcosp, T fi=u/r

Il, = — urcos?q, T = usin@cosg, F2= — utnp (7.8)
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Taking into account (7.6), (7.7) and (7.8), Equations (%.7) can be pre-
sented iIn the form

t (7.9)
;= & [ny 4 7 (@2 + (u + A)? costq) + grad' Unt] dt + r (0)
° t
. : . . .. A i o
rcos gA = &[n2 — (A + 2u) (rFcosp — re sing) + rcosq)grad Un,]dt+

=1

+ 7 (0) cos @ (0) A" (0)

t
1
rg’ = g [ns — (r¢ + rsingeos ¢ A+ W) + gradl Un?] dt <+ r (0) ¢ (0)
0
t

t .
rat e, A= \rpCesed+r0, o=\ 700 a+e0
0 0

l
™ e

And again taking into account (7.6), (7.7) and (7.8), Equations (4.8) can
be presented in the form

t
q}:_— R [— "h" cos? @ (A + uw) — TI,"(P + u (Tlmg— 'fll"la) r? cos @] dt 4 "ll ©
a
t
n . . . .
0 =-§|ﬂn}( J: D _ a8 0+ wang + v} (rT~m,=q>q>) + (7.10)
0

i
+ u (f1y — ninY) Sos q,] dt + nj (0)
o . - ) r. '
= —-g[rﬁ sin ¢ cos @ (A" 4 u) + n} 2;—-{— LM — T ucose (2 — n?n;)]dt + 12 0)
0

For uy = const the followlng values of n? satisfy Equations (7.10)

1_ A 2:_sin}» 3__ _ sin @ cos A
N = €0s P Cos A, Uh reosg’ W —

1. in A 2__ cod i 3_ __ singsin) 1
"M, = cos ¢ sin A, UH ooy’ N, — (7.11)
nl = sin @, T]g-‘: O, ‘I‘lg — COrS 9

It may be noted that for u = const . the value of nX¥ can be computed
directly from the definition %] = W;-Fs/h, and from Equations (7.1) and

= n,: 8 wlthout recourse to 1(4 8). This may be used as a proof of cor-
rectness of calculations.

ressions for n'n?n® coincident with those of (7.1) are obtained from
(2. 133) and (7.10).

Equations for computin are obtained from (4.10), (7.5) and (7.3) by
using Formulas (%4.9) and %2 6) for (4.8) and (2.13)
t
af = S a? udt +a} (0), af = — S a} udt + a3 (0), af = af (0) (7.12)
0 0
From these we obtaln for, “?, the same values, as in the case of Carteslan
coordinates x®==f*, for . From Equations ~le: N,E* we find
‘El=r c08 ¢ cos(A+-ut), E2 = rcos@sin (A + ut), £ = rsingq. After that, with
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reference to (4.11) and {7.6), we obtain the direction cosines of sensitivity
axes of accelerometers as follows:

3 | g g
€ cos @ cos (A 4 ut) | cos@sin (A4 ut) |sing

ey - sin (A + ut) ¢os (A + ut) 0
e |—singpcos(A +ut)| —singsin{h 4 ut) | cose@

Finally, from (5.13), (7.6), (7.7) and (7.8), we find
Oy =@+ A)sing, oy =—¢, 0y =u+2)cose
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